(%i4) load("simplify_sum")$
(%i5) simplify_sum(sum(1/n!,n,0,inf));
(%o5) %e
Someone had noted that sum(1/n!,n,0,inf),simpsum; wasn't evaluating to %e.
Someone else pointed out
(%i6) taylor(%e^n, n, 0, 6);What else does Maxima know?
2 3 4 5 6
n n n n n
(%o6)/T/ 1 + n + -- + -- + -- + --- + --- + . . .
2 6 24 120 720
(%i8) sum(k, k, 1, n), simpsum;
2
n + n
(%o8) ------
2
...
(%i10) simplify_sum(sum((-1)^(k+1) / k, k, 1, inf));
- 2 log(2) - %gamma %gamma
(%o10) - ------------------- - ------
2 2
(%i11) ratsimp(%);
(%o11) log(2)
(%i12) simplify_sum(sum(1/k^2, k, 1, inf));
2
%pi
(%o12) ----
6
(%i13) simplify_sum(sum(1/k^3, k, 1, inf));
(%o13) zeta(3)
...
(%i17) simplify_sum(sum(4^(-k) * z^(2*k)/(k!)^2, k, 0, inf));
inf
==== 2 k
\ z
(%o17) > ------
/ k 2
==== 4 k!
k = 0
... No Bessel functions?
(%i19) simplify_sum(sum(1/k^10, k, 1, inf));
10
%pi
(%o19) -----
93555
(%i20) simplify_sum(sum(1/k^50, k, 1, inf));
50
39604576419286371856998202 %pi
(%o20) ---------------------------------------------------
285258771457546764463363635252374414183254365234375
...
(%i22) simplify_sum(sum(1/(k^2 + 1), k, 1, inf));
%i psi (1 - %i) %i psi (%i + 1)
0 0
(%o22) --------------- - ---------------
2 2
... What is this?
No comments:
Post a Comment